INJURY-ASSOCIATED PERSISTENT ANEMIA IS A PERSISTENT ANEMIA SEEN IN THE ABSENCE OF ACUTE BLOOD LOSS AND IS ONE MANIFESTATION OF BM END ORGAN DYSFUNCTION THAT OCCURS FOLLOWING SEVERE TRAUMA AND PROLONGED CRITICAL ILLNESS. WE HAVE RECENT DATA SHOWING THAT NOREPINEPHRINE IS A KEY REGULATOR OF ERYTHROID PROGENITOR CELL GROWTH AND MOBILIZATION FOLLOWING TRAUMA, ALTHOUGH THE EXACT MECHANISMS INVOLVED HAVE YET TO BE ELUCIDATED. THE CENTRAL HYPOTHESIS IS THAT CHRONIC ADRENERGIC STIMULATION FOLLOWING INJURY AND HEMORRHAGIC SHOCK WORSENS BM DYSFUNCTION BY FURTHER INHIBITING THE DIFFERENTIATION OF HEMATOPOIETIC PROGENITOR CELLS (HPC) AND EXAGGERATING THE MOBILIZATION OF HEMATOPOIETIC PROGENITOR CELLS (HPC) FROM BONE MARROW (BM), THEREBY CONTRIBUTING TO INJURY-ASSOCIATED PERSISTENT ANEMIA. THIS RESEARCH IS SUPPORTED BY THE NIH-NIGMS.

With regard to ongoing HPC mobilization from the BM, potential causative factors that will be studied include increased production or an abnormal response to mediators of HPC mobilization, increased proteolysis within the BM and alterations in the BM architecture. Increased proteolysis (MMP-2, MMP-9, neutrophil elastase) in BM will be assessed by ELISA.

The medical student will begin an understanding of reviewing scientific literature and learn basic science laboratory techniques, including cell culture, RT-PCR, ELISA and western blot. He/she will develop insight on how basic science research can be applied in the clinical arena. They will perform cell cultures, ELISAs, as well as assist with qRT-PCR. The medical student will also perform statistics and report the results from the experiments.

